For the following functions (a) tell whether the graph opens up or opens down, (b) find the vertex, and (c) find the axis of symmetry

1. \(y = -3x^2 + 1 \)
 - a) down
 - b) \(x = \frac{0}{2(-3)} = 0 \) \(-3(0)^2 + 1 = 1\) (0, 1)
 - c) \(x = 0 \)

2. \(y = -2x^2 - 1 \)
 - a) down
 - b) \(-2(0)^2 - 1 = -1\) (0, -1)
 - c) \(x = 0 \)

3. \(y = 3x^2 - 2x \)
 - a) up
 - b) \(\frac{-(-2)}{2(3)} = \frac{2}{6} = \frac{1}{3} \) \(3\left(\frac{1}{3}\right)^2 - 2\left(\frac{1}{3}\right) = 3\left(\frac{1}{9}\right) - \frac{2}{3} = \frac{1}{3} - \frac{2}{3} = \frac{-1}{3} \)
 - c) \(x = \frac{1}{3} \)

4. \(y = -4x^2 - 2x + 9 \)
 - a) down
 - b) \(-4(-\frac{1}{4})^2 - 2(-\frac{1}{4}) + 9 = \frac{1}{4} \cdot \frac{1}{8} = \frac{1}{32} \) \(-5(-\frac{1}{2})^2 = -\frac{5}{4} \)
 - c) \(x = -\frac{1}{4} \)

5. \(-(x - 3)^2 - 4 = y \)
 - a) down
 - b) \((3, -4)\)
 - c) \(x = 3 \)

6. \(y = (x - 6)^2 + 3 \)
 - a) up
 - b) \((-5, -4)\)
 - c) \(x = \frac{5}{2} \)

Write the quadratic function in standard form.

10. \(y = (x - 2)^2 + 6 \)

11. \(y = 2x^2 + 4x + 3 \)

12. \(y = -3(x - 3)(x + 2) \)

Graph the function. Label the vertex and axis of symmetry.

13. \(y = x^2 - 3 \) \(x = 0 \)

14. \(y = -2x^2 + 4x \) \(y = -2(x - 2)^2 \)

15. \(y = 2x^2 + 6x + 1 \) \(\frac{-6}{2a} = \frac{-6}{2} = -3 \) \(\frac{b}{2a} = \frac{-3}{2} \) \(\left(-\frac{3}{2}, -3\frac{1}{2}\right) \)
\[y = -3x^2 - 12x + 1 \]

\[\frac{-(-12)}{2(-3)} = \frac{12}{-6} = \frac{-2}{-3} \]

\[(3, 0) \]

\[(4, 0) \]

\[\text{A.O.S: } \frac{3x - 1}{2} = 1 \]

\[1 + y = \frac{5}{2} = 2.5 \]

\[2 \]

\[\text{Vertex: } -\frac{1-3x}{4} \]

\[-\frac{1-2x}{1} \]

\[(3, 0) \]

\[(4, 0) \]

\[-3x = 0 \]

\[\frac{-3}{2} \]

\[x = -1 \]

\[x = 1 \]

\[x = 0 \]

\[\frac{-3(1)}{2} \]

\[\frac{3}{2} \]

\[\frac{-3}{2} \]
The flight of a particular golf shot can be modeled by the function \(y = -0.001x(x - 260) \) where \(x \) is the horizontal distance (in yards) from the impact point and \(y \) is the height in yards.

a. How many yards away from the impact point does the golf ball land?

\[260 \text{ yards} \]

b. What is the maximum height in yards of the golf shot?

\[y = -0.001x^2 - 2.6x \]

Vertex

\[x = -\frac{b}{2a} = -\frac{-2.6}{-2(0.001)} = 130 \]

\[y_{\text{max}} = -0.001(130)(130 - 260) = 16.9 \text{ yds} \]

Find the zeros of the function by rewriting the function in intercept form (Factoring!)

26. \(y = x^2 + 8x + 15 \)

\[(x + 5)(x + 3) = 0 \]

\[x = -5, x = -3 \]

27. \(y = x^2 - 12x + 32 \)

\[(x - 4)(x - 8) = 0 \]

\[x = 4, x = 8 \]

28. \(f(x) = x^2 - 2x - 35 \)

\[(x - 7)(x + 5)x - 7) = 0 \]

\[x = -5, x = 7 \]

29. \(y = x^2 - x - 30 \)

\[(x - 6)(x + 5) = 0 \]

\[x = 6, x = -5 \]

30. \(g(x) = x^2 + 10x + 9 \)

\[(x + 1)(x + 9) = 0 \]

\[x = -1, x = -9 \]

31. \(y = x^2 - 6x \)

\[y = x(x - 6) \]

\[x = 0, x = 6 \]

32. \(y = x^2 - 9 \)

\[(x - 3)(x + 3) = 0 \]

\[x = 3, x = -3 \]

33. \(y = x^2 + 16x + 64 \)

\[(x + 8)^2 = 0 \]

\[x = -8 \]

34. \(x^2 - 7x - 4 = 0 \)

\[(x - 1)(x - 6) = 0 \]

\[x = 1, x = 6 \]

35. \(9x - 8 = x^2 - 9x + 8 \)

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[x = \frac{8 \pm \sqrt{64 - 4(1)(8)}}{2(1)} \]

\[x = 3, x = -3 \]

36. \(2x^2 - 3x - 9 = y \)

\[2x^2 - 3x - 9 = 0 \]

\[x = 3, x = -\frac{3}{2} \]

37. \(4x^2 - 8x + 3 = 0 \)

\[(2x - 3)(2x - 1) = 0 \]

\[x = \frac{3}{2}, x = 1 \]
9x^2 - 4 = 0

(3x - 2)(3x + 2) = 0

\[x = \frac{2}{3} \]
\[x = -\frac{2}{3} \]

39. 8x^2 - 6x + 1 = 0

\[y = x(3x + 2) = 0 \]

\[x = 0 \]

\[x = -\frac{2}{3} \]

40. y = 3x^2 + 2x

41. y = 25x^2 + 10x - 24

\[\frac{-600}{25} \]
\[25x \div 5 \]
\[5x - 4 \] (5x + 6) = 0

\[x = \frac{4}{5} \]
\[x = -\frac{6}{5} \]

42. g(x) = 33x^2 - 9x - 24

\[\frac{3(11x^2 - 3x - 8)}{x - 1} \]
\[11x \div 11 \] (11x + 8)

\[8 \]
\[-88x^2 \]
\[11, 8 \]

\[3(x - 1)(11x + 8) = 0 \]

\[x = 1 \]
\[x = -\frac{8}{11} \]

43. You are making a square frame of uniform width for a square picture that has side lengths of 2 feet. The total area of the frame is 5 square feet. What is the length of the sides of the frame?

\[(x \cdot x) - (2)(2) = 5 \]

\[x^2 - 4 = 5 \]

\[\sqrt{x^2} = \sqrt{9} \]

\[x = 3 \text{ ft} \]

\[x^2 - 9 = 0 \]

\[(x + 3)(x - 3) = 0 \]

\[x = 3 \text{ ft} \]